Axial muscle function during lizard locomotion

نویسنده

  • Ritter
چکیده

It was recently reported that the epaxial muscles of a lizard, Varanus salvator, function to stabilize the trunk during locomotion, and it was suggested that this stabilizing role may be a shared derived feature of amniotes. This result was unexpected because it had previously been assumed that the epaxial muscles of lizards function to produce lateral bending during locomotion and that only in mammals and birds were the epaxial muscles active in stabilizing the trunk. These results and the inferences made from them lead to two questions. (1) Is the pattern of epaxial muscle activity observed in V. salvator representative of a basal lizard condition or is it a derived condition that evolved within lizards? (2) If the epaxial muscles do not produce lateral bending, which muscles do carry out this function? These questions were addressed by collecting synchronous electromyographic (EMG) and kinematic data from two lizard species during walking and running. EMG data were collected from the epaxial muscles of a lizard species from a basal clade, Iguana iguana, in order to address the first question. EMG data were collected from the hypaxial muscles of both Iguana iguana and Varanus salvator to address the second question. The timing of epaxial muscle activity in Iguana iguana relative to the kinematics of limb support and lateral trunk bending is similar to that observed in Varanus salvator, a finding that supports the hypothesis that the epaxial muscles stabilize the trunk during locomotion in lizards and that this stabilizing role is a basal feature of lizards. Therefore, a stabilizing function of the epaxial muscles is most parsimoniously interpreted as a basal amniote feature. In both Iguana iguana and Varanus salvator, the activity of two of the hypaxial muscles, the external oblique and rectus abdominis, is appropriately timed for the production of lateral bending. This indicates that elements of the hypaxial musculature, not the epaxial musculature, are the primary lateral bending muscles of lizards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional morphology and evolution of aspiration breathing in tetrapods.

In the evolution of aspiration breathing, the responsibility for lung ventilation gradually shifted from the hyobranchial to the axial musculoskeletal system, with axial muscles taking over exhalation first, at the base of Tetrapoda, and then inhalation as well at the base of Amniota. This shift from hyobranchial to axial breathing freed the tongue and head to adapt to more diverse feeding styl...

متن کامل

Epaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system

The pattern of electromyographic activity in the epaxial muscles of walking and running lizards (water monitors, Varanus salvator) was quantified with high-speed video and synchronized electromyography. Muscle denervation experiments were performed and ground reaction forces were recorded to evaluate hypotheses of muscle function. Water monitors exhibit unilateral, uniphasic activation of the e...

متن کامل

Lungfish Axial Muscle Function and the Vertebrate Water to Land Transition

The role of axial form and function during the vertebrate water to land transition is poorly understood, in part because patterns of axial movement lack morphological correlates. The few studies available from elongate, semi-aquatic vertebrates suggest that moving on land may be powered simply from modifications of generalized swimming axial motor patterns and kinematics. Lungfish are an ideal ...

متن کامل

The effects of temperature on the burial performance and axial motor pattern of the sand-swimming of the Mojave fringe-toed lizard Uma scoparia.

Although lateral axial bending is widespread for the locomotion of ectothermic vertebrates, the axial motor patterns of terrestrial taxa are known only for a limited number of species and behaviors. Furthermore, the extent to which the trunk and tail of ectothermic tetrapods have similar motor patterns is poorly documented. We therefore recorded the activity of the epaxial muscles in the trunk ...

متن کامل

The effects of speed on the in vivo activity and length of a limb muscle during the locomotion of the iguanian lizard Dipsosaurus dorsalis.

The caudofemoralis muscle is the largest muscle that inserts onto the hindlimb of most ectothermic tetrapods, and previous studies hypothesize that it causes several movements that characterize the locomotion of vertebrates with a sprawling limb posture. Predicting caudofemoralis function is complicated because the muscle spans multiple joints with movements that vary with speed. Furthermore, d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 199 Pt 11  شماره 

صفحات  -

تاریخ انتشار 1996